10,670 research outputs found

    Brittany Bernal - Sensorimotor Adaptation of Vowel Production in Stop Consonant Contexts

    Get PDF
    The purpose of this research is to measure the compensatory and adaptive articulatory response to shifted formants in auditory feedback to compare the resulting amount of sensorimotor learning that takes place in speakers upon saying the words /pep/ and /tet/. These words were chosen in order to analyze the coarticulatory effects of voiceless consonants /p/ and /t/ on sensorimotor adaptation of the vowel /e/. The formant perturbations were done using the Audapt software, which takes an input speech sample and plays it back to the speaker in real-time via headphones. Formants are high-energy acoustic resonance patterns measured in hertz that reflect positions of articulators during the production of speech sounds. The two lowest frequency formants (F1 and F2) can uniquely distinguish among the vowels of American English. For this experiment, Audapt shifted F1 down and F2 up, and those who adapt were expected to shift in the opposite direction of the perturbation. The formant patterns and vowel boundaries were analyzed using TF32 and S+ software, which led to conclusions about the adaptive responses. Manipulating auditory feedback by shifting formant values is hypothesized to elicit sensorimotor adaptation, a form of short-term motor learning. The amount of adaptation is expected to be greater for the word /pep/ rather than /tet/ because there is less competition for articulatory placement of the tongue during production of bilabial consonants. This methodology could be further developed to help those with motor speech disorders remedy their speech errors with much less conscious effort than traditional therapy techniques.https://epublications.marquette.edu/mcnair_2013/1008/thumbnail.jp

    Brittany Bernal - Sensorimotor Adaptation of Speech Through a Virtually Shortened Vocal Tract

    Get PDF
    The broad objective of this line of research is to understand how auditory feedback manipulations may be used to elicit involuntary changes in speech articulation. We examine speech sensorimotor adaptation to supplement the development of speech rehabilitation applications that benefit from this learning phenomenon. By manipulating the acoustics of one’s auditory feedback, it is possible to elicit involuntary changes in speech articulation. We seek to understand how virtually manipulating participants’ perception of vowel space affects their speech movements by assessing acoustic variables such as formant frequency changes. Participants speak through a digital audio processing device that virtually alters the perceived size of their vocal tract. It is hypothesized that this modification to auditory feedback will facilitate adaptive changes in motor behavior as indicated by acoustic changes resulting from speech articulation. This study will determine how modifying the perception of vocal tract size affects articulatory behavior, indicated by changes in formant frequencies and changes in vowel space area. This work will also determine if and how the size of the virtual vowel space affects the magnitude and direction of sensorimotor adaptation for speech. The ultimate aim is to determine how important it is for the virtual vowel space to mimic the talker’s real vowel space, and whether or not perturbing the size of the perceived vowel space may facilitate or impede involuntary adaptive learning for speech. Sensorimotor Adaptation of Speech Through a Virtually Shortened Vocal Tract by Brittany Bernal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.https://epublications.marquette.edu/mcnair_2014/1009/thumbnail.jp

    Constraining scalar field properties with boson stars as black hole mimickers

    Full text link
    Constraints to the mass of a scalar field and the strength of its self-interacting coupling constant are obtained. This was done using observations of stellar dynamics at the center of our galaxy and by assuming that the dark compact object responsible of such dynamics is a boson star and not a supermassive black hole. We show that if such scalar field represents a spin-zero particle with cross section high enough to be considered collisional dark matter, there is a region of parameters compatible with both conditions: that the scalar field play the role of collisional dark matter and that it can form objects with the mass and compactness compatible with stellar kinematics.Comment: To appear in the Procceedings of the VIII Workshop of the Gravitation and Mathematical Physics Division of the Mexican Physical Societ

    Streamwise vortex structure in plane mixing layers

    Get PDF
    The development of three-dimensional motions in a plane mixing layer was investigated experimentally. It is shown that superimposed on the primary, spanwise vortex structure there is a secondary, steamwise vortex structure. Three aspects of this secondary structure were studied. First, the spanwise vortex instability that generates the secondary structure was characterized by measurements of the critical Reynolds number and the spanwise wavelength at several flow conditions. While the critical Reynolds number was found to depend on the velocity ratio, density ratio and initial shear-layer-profile shape, the mean normalized wavelength is independent of these parameters. Secondly, flow visualization in water was used to obtain cross-sectional views of the secondary structure associated with the streamwise counter-rotating vortices. A model is proposed in which those vortices are part of a single vortex line winding back and forth between the high-speed side of a primary vortex and the low-speed side of the following one. Finally, the effect of the secondary structure on the spanwise concentration field was measured in a helium-nitrogen mixing layer. The spatial organization of the secondary structure produces a well-defined spanwise entrainment pattern in which fluid from each stream is preferentially entrained at different spanwise locations. These measurements show that the spanwise scale of the secondary structure increases with downstream distance

    Can we make a Finsler metric complete by a trivial projective change?

    Full text link
    A trivial projective change of a Finsler metric FF is the Finsler metric F+dfF + df. I explain when it is possible to make a given Finsler metric both forward and backward complete by a trivial projective change. The problem actually came from lorentz geometry and mathematical relativity: it was observed that it is possible to understand the light-line geodesics of a (normalized, standard) stationary 4-dimensional space-time as geodesics of a certain Finsler Randers metric on a 3-dimensional manifold. The trivial projective change of the Finsler metric corresponds to the choice of another 3-dimensional slice, and the existence of a trivial projective change that is forward and backward complete is equivalent to the global hyperbolicity of the space-time.Comment: 11 pages, one figure, submitted to the proceedings of VI International Meeting on Lorentzian Geometry (Granada

    Plasmonic Antennas Hybridized with Dielectric Waveguides

    Full text link
    For the purpose of using plasmonics in an integrated scheme where single emitters can be probed efficiently, we experimentally and theoretically study the scattering properties of single nano-rod gold antennas as well as antenna arrays placed on one-dimensional dielectric silicon nitride waveguides. Using real space and Fourier microscopy correlated with waveguide transmission measurements, we quantify the spectral properties, absolute strength and directivity of scattering. The scattering processes can be well understood in the framework of the physics of dipolar objects placed on a planar layered environment with a waveguiding layer. We use the single plasmonic structures on top of the waveguide as dipolar building blocks for new types of antennas where the waveguide enhances the coupling between antenna elements. We report on waveguide hybridized Yagi-Uda antennas which show directionality in out-coupling of guided modes as well as directionality for in-coupling into the waveguide of localized excitations positioned at the feed element. These measurements together with simulations demonstrate that this system is ideal as a platform for plasmon quantum optics schemes as well as for fluorescence lab-on-chip applications

    Application of the coherent state formalism to multiply excited states

    Full text link
    A general expression is obtained for the matrix element of an m-body operator between coherent states constructed from multiple orthogonal coherent boson species. This allows the coherent state formalism to be applied to states possessing an arbitrarily large number of intrinsic excitation quanta. For illustration, the formalism is applied to the two-dimensional vibron model [U(3) model], to calculate the energies of all excited states in the large-N limit.Comment: LaTeX (iopart); 10 pages; to be published in J. Phys.
    • …
    corecore